Kurssi
Julkaistu
(Päivitetty )
Helsingin yliopisto
Data Analysis with Python
Alkaen
5 op
Verkossa
Aineopinnot
The course uses practical approach to different phases of data analysis pipeline: data fetching and cleaning, reshaping, subsetting, grouping, and combining data; and using aggregation, machine learning and data visualization to extract knowledge from data.
- Libraries: Numpy, Pandas, Scikit-learn, (Matplotlib)
- Interactive study materials: Jupyter notebook
- Automatic checking of exercises: Test My Code framework
- Basics of Python language
- Numpy
- Creation and indexing of arrays
- Array concatenation and splitting
- Fast computation using universal functions
- Summary statistics
- Broadcasting
- Matrix operations and basic linear algebra
- Pandas
- Creating and indexing of Series and DataFrames
- Handling missing data
- Concatenation of Series and DataFrames
- Grouping and aggregating
- Merging DataFrames
- Gentle introduction to machine learning through Scikit-learn library
- Linear regression
- Naive Bayes classification
- Principal component analysis
- k-means clustering
- Project on applying the learned skills on an application field
Valitse sinulle sopiva opiskelutapa:
Lisätiedot ja ilmoittautuminen
Hinta ja ilmoittautumisaika
Tarkista tieto korkeakoulun sivuilta
Tarkentavat tiedot:
Koulutusalat
Tietojenkäsittely ja tietoliikenne
Laajuus
5 op
1 osa
Koodi
BSCS2015
Esitietovaatimukset
Osaamistavoitteet
Oppimateriaali
Lisätietoa